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Tanana River (Alaska, US) 

What is river hydraulic parameters inversibility 
with  SWOT data? 

Challenging points: 

• Unobservable river bathymetry? 

• Link between basal friction an 
topography? 

 

Congo River (Border of Congo and RDC) Garonne river  (Toulouse, France) 

Majuli , Brahmaputra River (India) 

SWOT data: elevation, width, slope 

Courtesy: Biancamaria 

Pavelsky et al. (2014) 

« 100m width  rivers » potentially  seen by SWOT 



Position of river parameters inverse problems 
 in a SWOT context 

• Reach averaged SWOT obs. (Z, W, Slope) + temporal revisits 

• No low flow bathymetry and friction observed 

 

 

Case of single thread channels 

 Under-constrained inverse problems 
 Triplet (Q, A0, K) Equifinality (e.g., Aronica et al. 1998, Roux and Dartus 2008, 
Garambois and Monnier 2015 ) 

A real velocity profile, Rio Negro at 

Novo Airão in 12/15 (ADCP 
Measurement) – Source Paris 2015 



Principle of DA for parameter inference in hydraulic models 

With: 

  : Discharge. 
  : Wet-cross section. 
  : Water elevation. 
  : Bed elevation. 
  : Water depth. 
  : Manning-Strickler (roughness coefficient). 
  : Hydraulic radius. 

1D  Shallow water : 
 

• The 1D Saint-Venant equations 



Principle of data assimilation (DA) 

• Estimate 𝑥𝑎 of the true input 𝑥𝑡 given a 
backgroung 𝑥𝑏 and partial observations 
with given covariance matrix. Stochastic 
methods (~Kalman filters) 

• Minimization of a cost function J 
using optimization and adjoint 
method (Variational methods) 

 Importance of observation operators 
 Physics of (Var) DA relies on the definition of cost functions J 
 ∃ conditions of equivalence between 4D-Var and Kalman filter algorithms 

[Nodet 2012] 



Data assimilation features 
 in the ST hydraulic models 

 
Model Model  paradigm Assim. 

method 

Identified 

variables 
Usable 

Data 
Data assimilation 

references 

DassFlow 

 
0,5D reach 
averaged 
1D full Saint-Venant 
2D SW (fully MPI) 

4D-VAR Q, K, 
A/zb,  

In situ Q, 
h + W, S 
and Z 

[Honnorat et al. 2006, 2008] 

[Hostache et al. 2009] JoH, 

[Lai and Monnier 2010] JoH, 

[Monnier et al.] in rev. 

[Brisset et al.] x2 in final 
redaction 

LisFlood-

FP 
1,5D 
1D full Saint-Venant 
FP - Diffusive wave 

ENKf Q W, Z, S [Biancamaria et al. 2011] RSE 

[Yoon et al. 2012] JoH 

[Andreadis & Schumann 2014] 

AdWR  

[Munier et al. 2015] 

 

Mascaret 1,5D 
1D full Saint-Venant 
FP storage 

EnKf Q W 
 

[Ricci et al. 2012] HESS 
[Habert et al. 2016] JoH 
 

SIC2 1,5D 
1D full Saint-Venant 
FP storage 

4D-VAR Q, K, 
A/zb,  

In situ Q, 
h + W, S 
and Z 

[Gejadze and Malaterre 2016] 

IJNMF (accepted) 



LISFLOOD-FP  
Estimating bathymetry (Yoon et al., 2012) Estimating discharge (Munier et al., 2015) 

Persistence (Andreadis & Schumann, 2014) 



River discharge estimation under uncertainty from in-situ 

and remote sensing data using variational data assimilation 

and a full Saint-Venant model 

- 1.5D Full Saint-Venant hydraulic model - Irstea/Montpellier: 

      SIC² “Simulation and Integration of Controls for Channels” 

- Variational data assimilation + Overlapped sliding windows 

- Garonne benchmark - Downstream reach (Tonneins → La Réole) 

 

 

H. Oubanas, I. Gejadze, P-O. Malaterre 

 

 Estimation of inflow discharge 𝑸 assuming exact bed level 𝒁𝒃 and Strickler coefficient 𝑲𝑺. 

 

Discharge hydrograph at Tonneins from 01/01/2010 to 31/05/2010 . 

(a) 1-day, (b) 2-day, (c) 4-day, (d) 5-day, observation period. 

1-day 2-day 4-day 5-day 

Q rRMSE 2.1% 9.5% 12.9% 18.2% 



A. Simultaneous estimation of 𝑸 and 𝑲𝑺, given exact 𝒁𝒃 

 

 

 

 

 

 

 

B. Simultaneous estimation of 𝑸 and 𝒁𝒃, given exact 𝑲𝑺 

 

 

 

 

 

 

 

 

C. Simultaneous estimation of 𝑸, 𝑲𝑺 and 𝒁𝒃  ⇒ Equifinality issue! 

 

 

 

 

 

 

𝑄 rRMSE 𝑲𝑺 rRMSE 𝒁𝒃 rRMSE 

A-I 12.9% 20.4% - 

A-II 2.6% 3.4% - 

B-I 50.0% - 5.7% 

B-II 3.8% - 4.9% 

C-I 40.5% 13% 5.7% 

C-II 7.1% 24.4% 4.7% 

C-III 5.1% 13% 4.5% 

(I) Estimation of 𝑄 solely using the first guess 

on: A)  𝐾𝑆, B) 𝑍𝑏, C) 𝐾𝑆 & 𝑍𝑏. (Blue) 

(II) Estimation of : A) (𝑄, 𝐾𝑆), B) Q, 𝑍𝑏 , C) 

𝑄, 𝐾𝑆, 𝑍𝑏 . (Red) 

(III) Estimation of (𝑄, 𝑍𝑏) using the first guess 

on 𝐾𝑆. (Green) 

 

Note : (a) Solid and dashed lines refers, respectively, to the estimate and the first guess on inflow discharge Q. 



• Water level is expressed as a truncated sum of polynoms that 

form an orthogonal basis w.r.t. the uncertain input random 

variables (Ks,Q) 

• Tool for low cost risk assessment and sensitivity analysis 

• Identify which variables are predominant for DA 

• The PC surrogate model is used in place of the forward model 

for ensemble-based covariance estimation in EnKF 

 

 

Reduced model for low cost UQ and DA 

Sobol indices between Tonneins and La 

Réole w.r.t. Ks and Q 

PhD N. El Mocayd 

log(L2) error on water level between MC 

and surrogate Regression (1000 

integrations) and Projection (15 forward 

model integrations) 

Error on the water level 

covariance matrix between 

MC and surrogate estimate 



River discharge estimation –  

DassFlow 0,5D – 1D – 2D Variational DA 

Garonne River, Acsending-descending 
SWOT tracks 

Assimilation of SWOT data in the DassFlow 
0.5D / 1D / 2D hydraulic assimilation chain 

- 0.5D reach averaged - 1D full Saint Venant  and 2D Shallow Water 
- Variational sensitivities & DA with SWOT like observation operators 
- Test cases: Garonne (hierarchical model), Xingu (0.5D-1D) etc 

 River bed  profile 
SWOT Reaches 

Discharge 
identification 
(1D and/or 2D) 

Spatially 
distributed 
sensitivites 
(roughness  , or 
bathymetry) 



River discharge estimation –  

DassFlow 0,5D – 1D – 2D Variational DA 

 River bed  profile 
SWOT Reaches 

Discharge 
identification 
(1D and/or 2D) 

Identification of roughness and discharge 

Cost function 
minimization and 

gradient 



LEGOS-CERFACS computation 
(SWEEP based version) 

 

10km Model outputs 10 km SWOT-HR outputs 

Synthetical SWOT data over the Garonne River (LEGOS et al.) 
Tools: 1D to 2D unstructured model output mapping   SWOT-HR simulator  

 

  

SWOT total error (m) 

Simulated SWOT pixel 

cloud on the Garonne 

river (France) 

SWOT 
error: 

Example of potential 1D 

product 

Reach elev. 35m 

Reach width 168m 

Reach slope 2 
cm/km 

Elev. error … 

SWOT water level (m) 

LEGOS-IMT computation 
 (Python based version ) 

SWOT total 

error  Q = 600 

m3/s 



Conclusions (1/2) 

• Possible Identification of couples of river 

unknowns (Q , 𝑍𝑏 and 𝐾𝑆) given SWOT like 

observations 

 

• Equifinality problems for the triplet identification 

(corroborates discharge algorithms conclusions) 

 

• River bed bathymetry data are crucial 

 

 

 



Conclusions (2/2) 

 
• Towards a world river bathymetry database? 

 
• Potential fruitful synergies and collaborations (to 

be defined?), model intercomparisons on Pepsi 
rivers with: 

 
• Hydraulic models including DA features. 
• Different hydraulic approaches to define SWOT reaches. 
• SWOT HR simulator data. 
• Fine DA experiments may feedback non DA approaches? 

 
 

 



Towards an intercomparison  
of DA approaches 

Potential objectives: 
– Extended characterization of discharge inversibility for 

different hydraulic data/drainage networks configurations. 
– Unobserved rivers/lakes: Inversibility at 

ungauged/unobserved locations? 
– Computational: explore different strategies for 

computational efficiency. 
– Impact on forecasting: does assimilation improve model 

predictability? 
 

Creation of a dedicated ST working group?  
 database release, blog, teleconfs… 

 

 
 


